Algebraic Logic
Algebraic Logic is the discipline that studies "Bridge Theorems" that allow to cross the mirror between Logic and Algebra by associating a purely semantic interpretation (such as the amalgamation property) with a given metalogical property (such as the interpolation property). This allows to study metalogical phenomena through the lenses of their semantic counterparts, which are typically amenable to the powerful methods of Universal Algebra, Lattice Theory and Category Theory. This perspective proved to be very fruitful both in the study of concrete logical systems such as Fuzzy, Modal and Intuitionistic Logics as well as in its most general formulation known as Abstract Algebraic Logic.
Mathematical Fuzzy Logic
Mathematical Fuzzy Logic is the part of Mathematical Logic that studies logical systems which extend the two-valued semantics of classical logic by allowing formulas to take value in the real unit interval. These formalisms provide a more faithful representation of those properties and predicates which, for their own nature, are perceived as graded. Several points of contact with other areas of mathematics such as functional analysis, probability theory, universal algebra, real convex geometry, have been explored and are a fruitful ongoing line of research.
Modal and Intuitionistic Logic
Modal and Intuitionistic Logics are some of the main non-classical logics. Modal Logic is known for extending the expressive power of classical (and many-valued) logic, while preserving many of its desirable computational features. On the other hand, Intuitionistic Logic is the deductive system that governs the constructive aspects of mathematics. Both these logics have a natural semantics consisting of topological Kripke frames, which proved to be a versatile tool in the modellization of problems ranging from Theoretical Computer Science and Artificial Intelligence to Philosophy and Metaphysics. In view of Duality Theory, this topological semantics is dually equivalent to a purely algebraic one which, moreover, is amenable to the methods of Algebraic Logic.
Formal Logics for Artificial Inteligence
The development of formal logics capable to simulate human-like reasoning is one of the central objective around which the logical community of Artificial Intelligence moved its first steps. Besides being a fundamental tool for analysis and the unquestionable ground for knowledge representation and reasoning, tools arising from the study of formal logic are retained to play a key role in the future of AI and, in particular for the integration between symbolic and sub-symbolic AI. This line of research aims at investigating formal logical methods for non-monotonic, causal, uncertain, preferencial reasoning and to lift them to more general and abstract levels.