Subordination algebras and closed relations between compact Hausdorff spaces

Luca Carai

Universitat de Barcelona, Barcelona, Spain luca.carai.uni@gmail.com

De Vries duality [3] establishes a dual equivalence between the category KHaus of compact Hausdorff spaces and continuous functions and the category DeV of de Vries algebras and de Vries morphisms. To each compact Hausdorff space X it is associated the de Vries algebra $\mathcal{RO}(X)$ of its regular open subsets equipped with the relation \prec defined by $U \prec V$ iff $cl(U) \subseteq V$. In this talk we see how to lift de Vries duality to the category KHaus^R of compact Hausdorff spaces and closed relations between them, where a binary relation $R: X \to Y$ is said to be *closed* if it is a closed subset of $X \times Y$.

We show that $\mathsf{KHaus}^\mathsf{R}$ is equivalent to the category $\mathsf{SubS5}^\mathsf{S}$ of S5-subordination algebras and compatible subordinations between them. S5-subordination algebras are boolean algebras equipped with binary relations that generalize the relations on de Vries algebras. In addition, this equivalence restricts to an equivalence between $\mathsf{KHaus}^\mathsf{R}$ and the subcategory DeV^S of $\mathsf{SubS5}^\mathsf{S}$ whose objects are de Vries algebras. This yields a generalization of de Vries duality to closed relations between compact Hausdorff spaces. We also describe the subcategories of $\mathsf{SubS5}^\mathsf{S}$ and DeV^S that are equivalent to KHaus and mention their advantages over DeV .

The last part of the talk is about MacNeille and ideal completions of S5-subordination algebras, which yield direct choice-free equivalences and dual equivalences between $SubS5^{S}$, DeV^{S} , and the category of compact regular frames and preframe homomorphisms.

This talk is based on the joint works [1, 2] with M. Abbadini and G. Bezhanishvili.

References

- [1] M. Abbadini, G. Bezhanishvili, and L. Carai, A generalization of de Vries duality to closed relations between compact Hausdorff spaces, 2022, arXiv:2206.05711.
- [2] _____, Ideal and MacNeille completions of subordination algebras, 2022, arXiv:2211.02974.
- [3] H. de Vries, *Compact spaces and compactifications. An algebraic approach*, Ph.D. thesis, University of Amsterdam, 1962.