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Coalgebra has emerged from the desire to find an abstraction of the behaviour of compu-
tational models [Rut00]. It starts with the insight that behaviour of many systems arises by
repeated observation of a morphism c : X → FX, where the kind of observations that can be
made are determined by a functor F : C → C on a category C. The idea is that FX is the
space of possible observations on X that the coalgebra c yields. Instances of this view are
transition systems, concurrent systems, probabilistic and timed systems, coinductive proofs,
and various systems with topological structure, such as topological models of modal logic, dy-
namical systems and hybrid systems. A coalgebra c gives rise to behaviour in form of a sequence
X

c−→ FX
Fc−−→ F (FX)

F (Fc)−−−−→ · · · that recursively expands the observations. If this sequence
approaches a limit, then this limit can be interpreted as total view on the behaviour of c [Bar93].

In this talk, I wish to present developments of enriched coalgebra in two main directions.
The first direction is a theory of enriched categories and fibrations of coalgebras. Enriched
category theory allows us to apply coalgebra to a wide variety of areas, which are not captured
by categories with sets of morphisms. For instance, we can instead consider coalgebras in metric
spaces, in order-enriched categories [BKPV11, BK11], topological or simplicial categories etc.
In this direction, I aim to first present a few basic results and examples on enrichment, weighted
(co)limits and (co)tensors for coalgebras. Then we turn to coalgebraic modal logic [CKP+11,
Mos99], which allows us to make partial observations on the recursive sequence mentioned
above. Over plain categories, various correspondence results between bisimilarity and logical
equivalence have been obtained [Kli07, Pat03, Sch08], and they have been extend to coalgebras
in enriched categories [BD13, Wil12, Wil13]. Recently, it was shown how results in coalgebraic
modal logic can be extended to other predicates by
modelling the target predicate as a fibration map
(F, F ) on a fibration p : E → B, the modal logic as
initial algebra for a functor L on a suitable category
D of algebras, and the relation between the two by
a pair of dual adjunction as in the diagram on the
right [KR21]. Whenever the two adjunctions are
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related by distributive laws and B comes with a factorisation system, we can general obtain
soundness and completeness results. My goal is to present an enriched version of this approach
to enriched coalgebraic modal logic, where the fibration etc. are suitably enriched.

The second direction of development concerns enriched Kleisli categories. The Kleisli cat-
egory of a monad is a well-known model for programs with computational effects. If the Kleisli
category is enriched, then this enrichment provides an account of other computational features,
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such as recursion via CPO-enrichment. I will show how to obtain an M-
enrichment for the Kleisli category of a monad T on a category V, even
though V may not be M-enriched, if the monad factor through the right-
adjoint U of a suitable adjunction as in the diagram on the left. This result
covers examples like order- and CPO-enrichment in case of the powerset

and distribution monad that are typical in program semantics. We will also look at topological
enrichment, which is the base of a homotopy theory for coalgebra, and can be used in topological
models of modal logic [GT22, KKV04, Bal03, VdB22] and hybrid systems [NB18, Nev17].
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