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In our daily life, we are used to compare things. We sort physical objects from smaller to
bigger, or propositions from less likely to more likely. These relations contribute to our intuitive
understanding of reality, and are naturally represented by a pre-order on a Boolean algebra.
Such framework is typically qualitative, as two elements can only be related in three possible
manners: smaller, bigger, or equivalent – without any consideration of degree or magnitude. By
contrast, human beings also managed to quantify some of their intuitions through measurement,
with examples including length, volume, temperature, and probabilities. Quantitative reasoning
is a core component of scientific inquiry, and its mathematical foundations have been studied ex-
tensively in [KLTS71]. Formally, a measure on a finite1 Boolean algebra B = (2X ,∩,∪, ·c, 0, 1)
is a map µ : B → [0,∞] satisfying µ(0) = 0 and µ(a∪ b) = µ(a) + µ(b) whenever a∩ b = 0. We
call µ bounded if in addition we have µ(a) < ∞ for all a ∈ B. Obviously, a measure µ always
induces a binary relation ⪯µ on B, defined by a ⪯µ b ⇐⇒ µ(a) ≤ µ(b). Relations of the
form ⪯µ will be called measurable, and bounded measurable in case µ is a bounded measure. So
there is a direct bridge from quantitative to qualitative comparison, but the other way around
is more limited, and this raises the question of which conditions on a binary relation ⪯ are
necessary and sufficient for ⪯ to be (bounded) measurable. In the case of bounded measures,
this problem was solved by Kraft, Pratt and Seidenberg in their 1959 paper [KPS59], and later
rewritten by Scott [Sco64] in a clearer manner. We present their conditions below. Given x ∈ X
and a1, . . . , am ∈ B, we write countx(a1, . . . , am) := {i ∈ [1,m] : x ∈ ai}.

Theorem 1. A binary relation ⪯ on B is bounded measurable if and only if the following
conditions are satisfied, for all m ≥ 1 and for all a, b, a1, . . . , am, b1, . . . , bm ∈ B:

• Positivity: 0 ⪯ a;
• Comparability: a ⪯ b or b ⪯ a;
• Cancellation: if countx(a1, . . . , am) = countx(b1, . . . , bm) for all x ∈ X and ai ⪯ bi for
all i ∈ [1,m− 1], then bm ⪯ am.

However, this result is not fully satisfying for a number a reasons, related to the cancellation
conditions. First, they involve the high-level operator countx, and even though they can be
rewritten in a purely Boolean manner [Seg71], they remain quite awkward to read and compute.
Second, they come in infinite number, and thus fail to provide a finite axiomatization for various
logics of measure, see for instance [Seg71, Gär75, vdH96]. It is surprising, perhaps, that this
result has never been improved in sixty years, nor proved to be optimal. In this work, we break
this uncomfortable status quo by proposing the following new characterization.

Theorem 2. A binary relation ⪯ on B is bounded measurable if and only if the following
conditions are satisfied, for all a, b, c, d ∈ B:
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• Comparability: a ⪯ b or b ⪯ a;
• Linearity: if a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Let us briefly sketch the proof of Theorem 2. The strategy for the right-to-left implication
is to derive the conditions of Theorem 1 from comparability and linearity. Positivity follows
from linearity with a = 0 and b = c = d. For cancellation, assume that countx(a1, . . . , am) =
countx(b1, . . . , bm) for all x ∈ X, and that ai ⪯ bi for all i ∈ [1,m− 1]. Consider for a moment
the case where a1, . . . , am, b1, . . . , bm are all pairwise disjoint. Then, the counting assumption
yields b1∪ · · ·∪ bm ⪯ a1∪ · · ·∪am, and by applying linearity m−1 times we arrive at bm ⪯ am.
This does not work in the general case, because when countx(a1, . . . , am) ≥ 2, the large union
a1 ∪ · · · ∪ am fails to keep track of the different repetitions of x. We can nonetheless bypass
this issue, and fall back to the previous case, by ‘duplicating’ the elements of X. In a critical
lemma, we show that we can introduce equivalent copies x1, . . . , x2m of every x ∈ X, in a way
that preserves positivity, comparability, and a weaker version of linearity. We then tweak the
sets a1, . . . , am, b1, . . . , bm by replacing their members with corresponding copies, so that one
copy never occurs twice (see the example below).

a1 = {x, z} b1 = {x, y} a∗1 = {x1, z1} b∗1 = {x5, y5}
a2 = {x, y} b2 = {z} a∗2 = {x2, y1} b∗2 = {z5}
a3 = {z} b3 = {x, y, z} a∗3 = {z2} b∗3 = {x6, y6, z6}
a4 = {x} b4 = {x} a∗4 = {x3} b∗4 = {x7}

It then suffices to apply the previous reasoning to the sets a∗1, . . . , a
∗
m, b∗1, . . . , b

∗
m.

We also address the case of arbitrary measurable relations.

Theorem 3. A binary relation ⪯ on B is measurable if and only if the following conditions
are satisfied, for all a, b, c, d ∈ B:

• Comparability: a ⪯ b or b ⪯ a;
• Transitivity: a ⪯ b and b ⪯ c implies a ⪯ c;
• Monotonicity: a ⊆ b implies a ⪯ b;
• Bounded Linearity: if 1 ̸⪯ c and a ∩ c = 0 and a ∪ c ⪯ b ∪ d and d ⪯ c, then a ⪯ b.

Finally, we observe that the conditions of Theorem 2 and Theorem 3 can be checked in
space logarithmic in the size of B. In the case of bounded measurable relations, this is a direct
improvement on the polynomial space algorithm of Kraft, Pratt and Seidenberg [KPS59].
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