Varieties of MV-monoids and positive MV-algebras

Marco Abbadini¹, Paolo Aglianò², and Stefano Fioravanti^{3*}

```
^{1}\, School of Computer Science, University of Birmingham, UK.
```

m.abbadini@bham.ac.uk

 $^{2}\,$ DIISM, Università di Siena, Italy.

agliano@live.com

 $^{3}\,$ Institute for Algebra, Charles University Prague, Czech Republic.

 ${\tt stefano.fior avanti 66@gmail.com}$

We investigate MV-monoids and their subvarieties. An MV-monoid is an algebra $\langle A, \vee, \wedge, \oplus, \odot, 0, 1 \rangle$ where:

- $\langle A, \vee, \wedge, 0, 1 \rangle$ is a bounded distributive lattice;
- $\langle A, \oplus, 0 \rangle$ and $\langle A, \odot, 1 \rangle$ are commutative monoids;
- \oplus and \odot distribute over \vee and \wedge ;
- for every $x, y, z \in A$,

$$(x \odot y) \oplus ((x \oplus y) \odot z) = (x \oplus (y \odot z)) \odot (y \oplus z);$$

$$(x \odot y) \oplus z = ((x \oplus y) \odot ((x \odot y) \oplus z)) \lor z;$$

$$(x \oplus y) \odot z = ((x \odot y) \oplus ((x \oplus y) \odot z)) \land z.$$

Every MV-algebra in the signature $\{\oplus, \neg, 0\}$ is term equivalent to an algebra that has an MV-monoid as a reduct, by defining, as standard, $1 := \neg 0$, $x \odot y := \neg (\neg x \oplus \neg y)$, $x \lor y := (x \odot \neg y) \oplus y$ and $x \land y := \neg (\neg x \lor \neg y)$. We show that every subdirectly irreducible MV-monoid **A** is totally ordered and satisfies the property: for all $x, y \in A$, $x \oplus y = 1$ or $x \odot y = 0$.

Using this result, we investigate the bottom part of the lattice of subvarieties of MV-monoids, characterizing all the almost minimal varieties of MV-monoids as the varieties generated by:

- a reduct of a finite MV-chain of prime order (\mathbf{L}_{p}^{+}) ;
- the unique MV-monoid \mathbf{C}_2^{Δ} on the 3-element chain $0 < \varepsilon < 1$ satisfying $\varepsilon \oplus \varepsilon = \varepsilon$ and $\varepsilon \odot \varepsilon = 0$;
- the dual of \mathbf{C}_2^{Δ} .

One of the main tools that we used to develop the theory of MV-monoids is the categorical equivalence Γ between unital commutative ℓ -monoids and MV-monoids [1].

A unital commutative ℓ -monoid is an algebra $\langle M, \vee, \wedge, +, 1, 0, -1 \rangle$ with the following properties:

- $\langle M, \vee, \wedge, +, 0 \rangle$ is a commutative ℓ -monoid;
- \bullet -1 + 1 = 0;
- $-1 \le 0 \le 1$;

^{*}Speaker, partially supported by the Austrian Science Fund FWF P33878 and by the PRIMUS/24/SCI/008.

• for all $x \in M$ there is $n \in \mathbb{N}$ such that

$$\underbrace{(-1) + \dots + (-1)}_{n \text{ times}} \le x \le \underbrace{1 + \dots + 1}_{n \text{ times}}.$$

Thus the relationship between unital commutative ℓ -monoids and MV-monoids is similar to the one between unital abelian ℓ -groups and MV-algebras and we exploit this fact in several statements of our work. We also present a version of Hölder's theorem for unital commutative ℓ -monoids.

Particular examples of MV-monoids are positive MV-algebras, i.e. the $\{\lor, \land, \oplus, \odot, 0, 1\}$ -subreducts of MV-algebras or, equivalently, the proper subquasivariety of the variety of MV-monoids (MVM), axiomatized relatively to MVM by

$$(x \oplus z \approx y \oplus z \text{ and } x \odot z \approx y \odot z) \implies x \approx y.$$

Positive MV-algebras form a peculiar quasivariety in the sense that, albeit having a logical motivation (being the quasivariety of subreducts of MV-algebras), it is not the equivalent quasivariety semantics of any logic in the sense of [2].

In this cancellative setting, we characterized the varieties of positive MV-algebras as precisely the varieties generated by finitely many reducts of finite nontrivial MV-chains. We also proved that such reducts coincide with the subdirectly irreducible finite positive MV-algebras. Using these results we prove that: a variety of positive MV-algebras is of the form $\mathcal{V}(\mathcal{K}_I)$, where I is a finite subset of $\mathbb{N} \setminus \{0\}$ containing all the divisors of its elements (divisor-closed subset) and \mathcal{K}_I is the set of all reducts of MV-chains \mathbf{L}_m^+ such that $|\mathbf{L}_m^+| - 1 \in I$.

In conclusion, we present axiomatizations of all the varieties of positive MV-algebras, using a strategy similar to the one of Di Nola and Lettieri [3]. To do so we define the following set of equations.

Let $I \subseteq \mathbb{N}$ be a divisor-closed set, and let m be the maximum of I (with the convention that m = 0 if $I = \emptyset$). We define Σ_I as the set of equations given by:

$$(m+1)x \approx mx$$
 and $m((k-1)x)^k \approx (kx)^m$ (1)

for all $1 \leq k \leq m$ such that $k \notin I$. For $n \in \mathbb{N}$ and $k \in \mathbb{Z}$ we define the unary term $\tau_{n,k}(x)$ inductively on n as follows:

$$\tau_{0,k}(x) := \begin{cases} 1 & \text{if } k \le -1, \\ 0 & \text{if } k \ge 0, \end{cases} \qquad \tau_{n+1,k}(x) = \tau_{n,k-1}(x) \odot (x \oplus \tau_{n,k}(x)).$$

For every $n \in \mathbb{N}$, let Φ_n be the following set of equations, for k ranging in $\{0, \ldots, n-1\}$:

$$\tau_{n,k}(x) \oplus \tau_{n,k}(x) \approx \tau_{n,k}(x) \text{ and } \tau_{n,k}(x) \odot \tau_{n,k}(x) \approx \tau_{n,k}(x).$$
 (2)

Theorem. Let I be a divisor-closed finite set; then $\mathcal{V}(\mathcal{K}_I)$ is axiomatized by $\Phi_{\text{lcm}(I)} \cup \Sigma_I$ relatively to the variety of MV-monoids.

References

- [1] M. Abbadini. Equivalence à la Mundici for commutative lattice-ordered monoids. Algebra universalis, 82(3), 2021.
- [2] G. D. Barbour and J. G. Raftery. Quasivarieties of logic, regularity conditions and parameterized algebraization. Studia Logica: An International Journal for Symbolic Logic, 74(1/2):99–152, 2003.
- [3] A. Di Nola and A. Lettieri. Equational characterization of all varieties of MV-algebras. *Journal of Algebra*, 221(2):463–474, 1999.