Implication free reduct of intuitionism, or p-algebras revisited

Tomasz Kowalski
 134 and Katarzyna Słomczyńska
 2

Jagiellonian University, Kraków, Poland tomasz.s.kowalski@uj.edu.pl
University of the National Education Commission, Kraków, Poland irena.korwin-slomczynska@up.krakow.pl
La Trobe University, Melbourne, Australia
The University of Queensland, Brisbane, Australia

Abstract

We give a new description of free (distributive) p-algebras, which in particular yields a normal form theorem for terms. We also prove some new results about the subquasivariety lattice, which for lack of space we can only signal below.

1 Introduction

A distributive p-algebra (from now on, simply, a p-algebra) is an algebra $(A; \land, \lor, *, 0, 1)$ where $(A; \land, \lor, 0, 1)$ is a bounded distributive lattice, and the unary operation * satisfies the equivalence

$$x \wedge y = 0 \iff x \leq y^*$$
.

P-algebras are a variety, Pa, consisting of term-subreducts of Heyting algebras, without implication but with the term $x^* := x \to 0$. Their subvariety lattice is a chain of type $\omega + 1$:

$$Pa_{-1} \subset Pa_0 \subset Pa_1 \subset \cdots \subset Pa$$

where Pa_{-1} is the trivial variety, and Pa_k is generated by a single subdirectly irreducible algebra. In contrast to Heyting algebras, they are not 1-regular and not even 1-subtractive, although they are 0-subtractive (yet still not 0-regular).

They were studied extensively in 1970s and 1080s, and then the research petered out. We try to rekindle the interest in these algebras providing a new description of free p-algebras, based entirely on a thorough understanding of completely meet-irreducible congruences. This enables us to formulate a normal form theorem for p-algebra terms, and prove some results about the lattice of subquisivarieties of p-algebras, sharpening the existing ones.

2 Free algebras

We build free algebras using completely meet-irreducible congruences. The most important observation on them is that they come in two layers, given in the following definition, where $\mathbf{Cm} \mathbf{A}$ stands for the set of completely meet-irreducible congruences of \mathbf{A} ; for $\mu \in \mathbf{Cm} \mathbf{A}$, we write μ^+ for the unique cover of μ in the lattice $\mathbf{Con} \mathbf{A}$ of all congruences of \mathbf{A} , and $M(\alpha)$ is $\{\mu \in \mathbf{Cm} \mathbf{A} : \alpha \subseteq \mu\}$.

Definition 2.1. Let $A \in Pa$. Put

$$I_{\mathbf{A}} := \{ \mu \in \mathbf{Cm} \, \mathbf{A} : \mathbf{A}/\mu \cong \overline{\mathbf{B}}_0 \} = \{ \mu \in \mathbf{Cm} \, \mathbf{A} : \mu^+ = \mathbf{1}^{\mathbf{A}} \},$$

$$II_{\mathbf{A}} := \{ \mu \in \mathbf{Cm} \, \mathbf{A} : \mathbf{A}/\mu \cong \overline{\mathbf{B}}_n \text{ for } n > 0 \} = \{ \mu \in \mathbf{Cm} \, \mathbf{A} : M(\mu^+) \subseteq I_{\mathbf{A}} \}.$$

Let $\mathbf{F}_n(k)$ be the free k-generated p-algebra in the variety Pa_n . Let $T \in \mathcal{P}(k)$, define $f_T: \{x_1,\ldots,x_k\} \to \{0,1\}$ putting $f_T(x_i) := 1$ if $i \in T$, and 0 otherwise. Let \bar{f}_T be the homomorphism onto $\mathbf{2}$ extending f_T . For any $T \in \mathcal{P}(k)$ and any $\mu \in \mathbf{Cm} \, \mathbf{F}_n(k)$ we have $\mu \in \mathbf{I}_{\mathbf{F}_n(k)} \iff \mu = \ker \bar{f}_T$. Next, define

$$x_T := \bigwedge_{i \in T} x_i \wedge \bigwedge_{i \notin T} x_i^*. \tag{at}$$

Then, for any $T \in \mathcal{P}(k)$, the element x_T is an atom and every atom of $\mathbf{F}_n(k)$ is of this form. Therefore, if $\mu \in I_{\mathbf{F}_n(k)}$ then $1/\mu = [x_T)$ for some $T \in \mathcal{P}(k)$. Write μ_T for that μ .

It can be shown that each join-irreducible element $p \in \mathbf{F}_n(k)$ is the smallest element of $1/\mu$ for some $\mu \in \mathbf{Cm} \, \mathbf{F}_n(k)$. For an arbitrary but fixed $\mu \in \mathbf{Cm} \, \mathbf{F}_n(k)$, we define

$$L := \{i < k : x_i \in 1/\mu\}, \qquad \mathcal{T} := \{T \in \mathcal{P}(k) : \mu \subseteq \mu_T\}, \qquad p_{\mathcal{T}}^L := \left(\bigvee_{T \in \mathcal{T}} x_T\right)^{**} \land \bigwedge_{i \in L} x_i.$$

Intuitively, L encodes the set of generators that μ maps to 1, and \mathcal{T} encodes the set of maximal congruences extending μ . For any $L \subseteq k$ and nonempty $\mathcal{T} \subseteq \mathcal{P}(k)$, such that $L \subseteq \bigcap \mathcal{T}$, we will write $\mu_{\mathcal{T}}^L$ for the unique congruence in $\mathbf{Cm} \, \mathbf{F}_n(k)$ such that $1/\mu_{\mathcal{T}}^L = [p_{\mathcal{T}}^L)$.

Definition 2.2. Let \mathcal{T} and \mathcal{S} be nonempty subsets of $\mathcal{P}(k)$. Let $L \subseteq \bigcap \mathcal{T}$ and $K \subseteq \bigcap \mathcal{S}$. Define an ordering relation $<^{\mathbf{Cm}}$ on $\mathbf{Cm} \, \mathbf{F}_n(k)$ putting

$$\mu_{\mathcal{T}}^{L} \leq^{\mathbf{Cm}} \mu_{\mathcal{S}}^{K} \iff \mathcal{S} \subseteq \mathcal{T} \text{ and } L \subseteq K.$$

Theorem 2.3 (Structure of free p-algebra). We have:

$$\mathbf{F}_n(k) \cong \operatorname{Up}(\mathbf{Cm}\,\mathbf{F}_n(k), \leq^{\mathbf{Cm}})$$

where Up is the usual up-set operator.

Theorem 2.4 (Normal form theorem). Every element t of the algebra $\mathbf{F}_n(k)$ is of the form

$$t = \bigvee \max \{ p_{\mathcal{T}}^L \in \mathcal{J}(\mathbf{F}_n(k)) : p_{\mathcal{T}}^L \le t \}$$

where $\mathcal{J}(-)$ stands for the set of join-irreducible elements.

For $n \geq \mathcal{P}(k)$, this yields $|\mathcal{J}(\mathbf{F}_n(k))| = \sum_{i=0}^k {k \choose i} (2^{2^i} - 1)$, a formula known before, but our calculation is much easier.

3 Subquasivarieties

Using our description of free algebras and a few tricks we can show that

- Each free p-algebra belongs to the splitting companion (in the quasivariety lattice) of Pa_3 . For $n \geq 2$, the interval $[\mathsf{Pa}_n, \mathsf{Pa}_{n+1}]$ is of cardinality continuum.
- For $n \geq 3$, the variety Pa_n is not structurally complete in the algebraic sense, in spite of the fact that the corresponding logic is structurally complete by a result of G. Mints. The discrepancy is due to non-algebraizability of the logic.