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Contextuality in a nutshell

Where we have a family of data which is
locally consistent, but globally inconsistent
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Contextuality Analogy: Local Consistency
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Contextuality Analogy: Global Inconsistency
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The Nobel Prize in Physics 2022

Summary

© Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo: © Nobel Prize Outreach. Photo:
Stefan Bladh Stefan Bladh Stefan Bladh

Alain Aspect John F. Clauser Anton Zeilinger
Prize share: 1/3 Prize share: 1/3 Prize share: 1/3

The Nobel Prize in Physics 2022 was awarded jointly to Alain Aspect,
John F. Clauser and Anton Zeilinger "for experiments with entangled
photons, establishing the violation of Bell inequalities and pioneering
quantum information science" 6,29
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Alice-Bob games
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e Verifier chooses an input = € {0, 1} for Alice, and similarly an input y for Bob. We
assume the uniform distribution for Nature’s choices.

e Alice and Bob each have to choose an output, a € {0,1} for Alice, b € {0,1} for Bob,
depending on their input. They are not allowed to communicate during the
game.

e The winning condition: a ® b=z Ay.

A table of conditional probabilities p(a, bz, y) defines a probabilistic strategy for this
game. The success probability for this strategy is:

1/4p(a =blz =0,y =0)+pla=blxa =0,y =1) + p(a =blz = 1,y = 0)

+pla#ble=1y=1)
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A Strategy for the Alice-Bob game

Example: The Bell Model

A B|(0,00 (1,0) (0,1) (1,1)
0 0] 12 0 0 1/2
0 1] 38 1/8 1/8 3/8
1 0| 38 1/8 1/8 3/8
1 1] 1/8 3/8 3/8 1/8
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== O O
— o = Ol
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A Strategy for the Alice-Bob game
Example: The Bell Model

The entry in row 2 column 3 says:

If the Verifier sends Alice ay and Bob by, then with probability 1/8, Alice outputs
a 0 and Bob outputs a 1.

This gives a winning probability of % ~ 0.81.
The optimal classical probability is 0.75!
The proof of this uses (and is essentially the same as) the use of Bell inequalities.

The Bell table exceeds this bound. Since it is quantum realizable using an entangled
pair of qubits, it shows that quantum resources yield a quantum advantage in an
information-processing task.
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George Boole 1815-64 John Stewart Bell 1928-90

George Boole was a pioneer of logic, probability, — and of computer science.

There is a remarkable connection between his work in probability from the 1850’s and the
idea of Bell inequalities, fundamental to Bell’s theorem, non-locality, and quantum
information and computation.

This was first pointed out by Itamar Pitowsky, George Boole’s ‘conditions of possible
experience’ and the quantum puzzle (1994).

Discussion in my paper Classical Probability, Classical Logic, and Quantum Mechanics in
volume for Pitowsky Quantum, Probability, Logic (2020).
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Boole’s “conditions of possible experience”

Pitowsky’s pellucid summary:

Boole’s problem is simple: we are given rational numbers which indicate the rel-
ative frequencies of certain events. If no logical relations obtain among the events,
then the only constraints imposed on these numbers are that they each be mon-
negative and less than one. If however, the events are logically interconnected,
there are further equalities or inequalities that obtain among the numbers. The
problem thus is to determine the numerical relations among frequencies, in terms
of equalities and inequalities, which are induced by a set of logical relations among
the events. The equalities and inequalities are called “conditions of possible experi-
ence”.
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negative and less than one. If however, the events are logically interconnected,
there are further equalities or inequalities that obtain among the numbers. The
problem thus is to determine the numerical relations among frequencies, in terms
of equalities and inequalities, which are induced by a set of logical relations among
the events. The equalities and inequalities are called “conditions of possible experi-
ence”.

More formally, we are given basic events E, ..., E,, and boolean functions ¢1, ..., @, of
these events. Such a function can be described by a propositional formula in the variables
Ey, ..., E,.

Suppose further that we are given probabilities p(E;), p(¢,) of these events.

Question: What numerical relationships between the probabilities
can we infer from the logical relationships between the events?
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A Simple Observation
We have propositional formulas ¢, ..., ¢x, with probabilities p; = Prob(¢;).

Suppose that these formulas are not simultaneously satisfiable. Then (e.g.)

N-1

—1
/\ ¢i = —¢n, orequivalently oy = \/ ;.

=1

Using elementary probability theory, we can calculate:

N-1 N-1 N-1 N—1
pn < Prob( \/ —¢;) < Z Prob(—¢;) Z (1-p) = (N—-1)— Z Di.
i=1 i=1 =1 =1

Hence we obtain the inequality

N
Zpi < N-1
i—1
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represented by the following propositions:
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P2
¥3
P4
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= (ﬁag A\ bg)

V
V
V
V

(_‘al A —\bl)
(_‘al AN _\bg)
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((IQ N ﬁbg)

These propositions are easily seen to be contradictory.

The violation of the logical Bell inequality is 1/4.
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The general form

Given a family of propositions {p;}, we say it is K-consistent if the size of the largest
consistent subfamily is K.

Suppose that we have a K-consistent family {¢;} over the basic events Ey, ..., E,. For
any probability distribution on the set of truth-value assignments to the F;, with induced
probabilities p(¢;) for the events ¢;, we have:

Zp(cpi) < K (1)

Remarkably, all Bell inequalities arise this way (Abramsky and Hardy, Logical Bell
inequalities, Physical Review A 2012)
Theorem

A rational inequality is satisfied by all non-contextual empirical models if and only if it is
equivalent to a logical Bell inequality of the above form.
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Answering Boole, Quantum questions

This gives a full logical answer to Boole’s problem.

The following quotation from Pitowsky suggests that he may have envisaged the possibility

of such a result:
In fact, all facet inequalities for c¢(n) should follow from “Venn diagrams”, that
18, the possible relations among n events in a probability space.

With contextuality, we are concerned with

( quantum conditions of impossible experience )
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Science Fiction? — The News from Delft
First Loophole-free Bell test, 2015

NATURE | LETTER
BAEEN

Loophole-free Bell inequality violation using electron spins separated by 1.3
kilometres

B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. R.F.L. R.N. C. Abellan, W.
Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau & R. Hanson

Nature 526, 682-686 (29 October 2015)  doi:10.1038/nature15759
Received 19 August 2015 Accepted 28 September 2015 Published online 21 October 2015

More than 50 years ago', John Bell proved that no theory of nature that obeys locality and realism? can reproduce all the predictions of
quantum theory: in any local-realist theory, the i between of on distant particles satisfy an inequality
that can be violated if the particles are Bell i ity tests have been reported3: 4 5 6,7, 8,9, 10, 11, 12, 13; however, all
experiments reported so far required to obtain a i with local realism, resulting in ‘loopholes'!3 14,15,
16_ Here we report a Bell experiment that is free of any such additional assumption and thus directly tests the principles underlying Bell’s
inequality. We use an event-ready scheme7: 18, 19 that enables the g ion of robust between distant electron spins
(estimated state fidelity of 0.92 + 0.03). Efficient spin read-out avoids the fair- loophole'® 15), while the use
of fast random-basis selection and spin read-out i with a spatial ion of 1.3 kil ensure the required locality
conditions 3. We performed 245 trials that tested the CHSH-Bell inequality?® S < 2 and found S = 2.42 + 0.20 (where S quantifies the

between A null is test yields a probability of at most P = 0.039 that a local-realist model for
space-like separated sites could produce data with a violation at least as large as we observe, even when allowing for mamc'ry1s 21in the
devices. Our data hence imply isti jection of the local-realist null is. This ion may be further

in future i for instance, ing a value of P =0.001 would require approximately 700 trials for an observed S =
2.4. With improvements, our experiment could be used for testing less-conventional theories, and for implementing device-independent
22 and certification?3 24,

17 /29



NATURE | NEWS

Quantum ‘spookiness’ passes toughest test yet

Experiment plugs loopholes in previous demonstrations of ‘action at a distance’, against Einstein's objections — and could make data

encryption safer.
Zeeya Merali

27 August 2015

CERN
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U PhysTCS v

Viewpoint: Closing the Door on Einstein and Bohr’s Quantum
Debate

Alain Aspect, Laboratoire Charles Fabry, Institut d'Optique Graduate School, CNRS, Université Paris-Saclay, Palaiseau, France
December 16,2015 « Physics 8,123

By closing two loopholes at once, three il tests of Bell’s ii
local realism. They also open the door to new

ies remove the last doubts that we should renounce
information i

Source

¥

—

APS/Alan Stonebraker

Figure 1: An apparatus for performing a Bell test. A source emits a pair of entangled photons v, and v..

Their polarizations are analyzed by polarizers A and B (grey blocks), which are aligned, respectively, 19 /29



Timeline

1932
1935
1964
1982

1984
1985
1993

1994
2015
2019
2020
2022
2024

von Neumann’s Mathematical Foundations of Quantum Mechanics
EPR Paradox, the Einstein-Bohr debate

Bell’s Theorem

First experimental test of EPR and Bell inequalities

(Aspect, Grangier, Roger, Dalibard)

Bennett-Brassard quantum key distribution protocol

Deutch Quantum Computing paper

Quantum teleportation

(Bennett, Brassard, Crépeau, Jozsa, Peres, Wooters)

Shor’s algorithm

First loophole-free Bell tests (Delft, NIST, Vienna)

Quantum supremacy claimed by Google

Quantum supremacy via boson sampling by USTC

Nobel Prize in Physics for Aspect, Clauser and Zeilinger for Bell experiments
Emerging quantum computing and technology industry ...
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Formalising empirical data™

*SA, Brandenburger, New Journal of Physics, 2011.

A measurement scenario X = (X, %, O): (
e X — a finite set of measurements E ,0)

e Y — a simplicial complex on X
faces are called the measurement
contexts °
e O =(0y)zex — for each € X a finite Oe ‘ . o1
non-empty set of possible outcomes O, 1 AR
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A measurement scenario X = (X, %, O):

e X — a finite set of measurements

e Y — a simplicial complex on X in\out ‘ 0,00 (0,1) (1,0) (1,1)
faces are called the measurement (,0) iy 0 0 s
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(i.e. marginals are well-defined)
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Contextuality defined
An empirical model {ec}cex on a measurement scenario (X, ¥, O) is non-contextual if
there is a distribution d on [], .y O, such that, for all o € %

dl, = eq.

That is, we can glue all the local information together into a global consistent description
from which the local information can be recovered.

We call such a d a global section.
If no such global section exists, the empirical model is contextual.

Thus contextuality arises where we have a family of data which is locally consistent but
globally inconsistent.

The import of Bell’s theorem and similar results is that there are empirical models arising

from quantum mechanics which are contextual.
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Bundle Diagrams

ayp ¢

by

Figure 1: A (2,2,2) Bell-type scenario. The section (a;,b;) — (1, 1) is represented in the centre. On the
right, the global section (ay,b,a2,b2) — (1,1,0,0)
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Bundle Pictures

Logical Contextuality
e Ignore precise probabilities
e Events are possible or not
e E.g. the Hardy model:

| oo [o1]10]11]|
ab || v
ab || X
ab | x
at'|| v

v
v
v
v

S IR

SENENEN
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Bundle Pictures

Oe
Logical Contextuality *0
e Ignore precise probabilities Oe .
e Events are possible or not e . 1
e E.g. the Hardy model: ! . : .
. . [ ]
| oo o01]10] 11| 1
ab || v | vV |V |V : ' '
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Contextuality

Definition

There is a hierarchy of contextuality

Probabilistic C Logical C Strong

Figure 2: The Hardy model and the PR-Box model as bundle diagrams.
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The Bell table and the “Mobius strip”

0,00 (1,0) (0,1) (L1)
(a1,b1) | 172 0 0 1/2
(a1,by) | '3/8 1/8 1/8  |3/8
(ag,b1) | '3/8 1/8 1/8  |3/8
(a2,bs) | 1/8 M M 1/8
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The Bell table and the “Mobius strip”

0,00 (1,0) (0,1) (L1)
(a1,b1) | 172 0 0 1/2
(a1,by) | '3/8 1/8 1/8  |3/8
(ag,b1) | '3/8 1/8 1/8  |3/8
(a2,bs) | 1/8 M M 1/8

Physics «~ Probability «~ Logic «~ Topology

26 /29



Contextuality, Logic and Paradoxes

27 /29



Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1: Sy is true,
Sy : S3 is true,

Sn_1: Sy is true,
Sy : Sy is false.

For N =1, this is the classic Liar sentence

S S is false.
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Contextuality, Logic and Paradoxes

Liar cycles. A Liar cycle of length N is a sequence of statements

S1: Sy is true,
Sy : S3 is true,

Sn_1: Sy is true,
Sy : Sy is false.

For N =1, this is the classic Liar sentence

S : S is false.

Following Cook, Walicki et al. we can model the situation by boolean equations:

Tl =22, «..y, Tp—-1=7=Tp, Tp = "1T1

The “paradoxical” nature of the original statements is now captured by the inconsistency

of these equations.
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Contextuality in the Liar; Liar cycles in the PR Box
We can regard each of these equations as fibered over the set of variables which occur in it:
{3317562} T = 22

{xz,l’g}: T2 = I3

{Tn-1,Tn}: Tho1= T
{zn, 21} : ®,, =11
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

{z1,22}: 21 = 29
{xo,23} 1 @2 = 23

{xn—hxn}: Tpn—1 = Tn
(enyz1}: @ =@

Any subset of up to n — 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR
box.
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Contextuality in the Liar; Liar cycles in the PR Box

We can regard each of these equations as fibered over the set of variables which occur in it:

{z1,22}: 21 = 29
{2, 23} 1 @2 x3

{xn—hxn}: Tpn—1 = Tn
(enyz1}: @ =@

Any subset of up to n — 1 of these equations is consistent; while the whole set is
inconsistent.

Up to rearrangement, the Liar cycle of length 4 corresponds exactly to the PR
box.

The usual reasoning to derive a contradiction from the Liar cycle corresponds precisely to
the attempt to find a univocal path in the bundle diagram.
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The Robinson Consistency Theorem

A classic result:
Theorem (Robinson Joint Consistency Theorem)

Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in L1 N Ly with
Ty = ¢ and Ty = =@, then Ty U T5 is consistent.
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The Robinson Consistency Theorem

A classic result:
Theorem (Robinson Joint Consistency Theorem)

Let T; be a theory over the language L;, i = 1,2. If there is no sentence ¢ in L1 N Ly with
Ty F ¢ and Ty = ¢, then Ty UT5 is consistent.

Thus this theorem says that two compatible theories can be glued together. In this binary
case, local consistency implies global consistency.

Note, however, that an extension of the theorem beyond the binary case fails. That is, if
we have three theories which are pairwise compatible, it need not be the case that they can
be glued together consistently.

A minimal counter-example is provided at the propositional level by the following
Specker triangle:

T, = {331 — —\xz}, Ty = {332 — —\$3}, T3 = {333 — —\331}.
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