A categorical approach to automata learning and minimization – part 2

Daniela Petrişan

Université Paris Cité, IRIF, France

TACL'24, Barcelona, 24-28 June 2024

The setting: Automata and languages as functors

An automaton ${\mathcal A}$ accepts a language ${\mathcal L}$ when the next diagram commutes

The setting: Automata and languages as functors

An automaton ${\mathcal A}$ accepts a language ${\mathcal L}$ when the next diagram commutes

For every language $\mathcal{L} \colon \mathcal{O} \to \mathcal{C}$ we consider a category $\mathsf{Auto}_{\mathcal{L}}$ of automata accepting \mathcal{L} .

 \mathcal{O} can be seen as an "observation" subcategory of \mathcal{I} .

Much of the ensuing theory can be developed independently on the precise shape of \mathcal{I} .

A useful lemma

An adjunction $F \dashv U \colon \mathcal{C} \to \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I}, \mathcal{C}]$ and $[\mathcal{I}, \mathcal{D}]$.

A useful lemma

An adjunction $F \dashv U \colon \mathcal{C} \to \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I}, \mathcal{C}]$ and $[\mathcal{I}, \mathcal{D}]$. We can refine this for any objects X in \mathcal{C} and Y in \mathcal{D} to a lifting:

A useful lemma

An adjunction $F \dashv U \colon \mathcal{C} \to \mathcal{D}$ lifts to an adjunction between functor categories $[\mathcal{I},\mathcal{C}]$ and $[\mathcal{I},\mathcal{D}]$. We can refine this for any objects X in \mathcal{C} and Y in \mathcal{D} to a lifting:

such that, furthermore, the lifted functors preserve the accepted languages up to isomorphism (since $C(X, UY) \cong D(FX, Y)$).

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have $U_{\mathcal{P}}(1) = \mathcal{P}(1) = 2$ and $F_{\mathcal{P}}(1) = 1$.

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have $U_{\mathcal{P}}(1) = \mathcal{P}(1) = 2$ and $F_{\mathcal{P}}(1) = 1$.

The same language L can be seen a Set-valued functor \mathcal{L}_{Set} , and equivalently, as a Rel-valued functor \mathcal{L}_{Rel} .

An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have $U_{\mathcal{P}}(1)=\mathcal{P}(1)=2$ and $F_{\mathcal{P}}(1)=1$.

The same language L can be seen a Set-valued functor \mathcal{L}_{Set} , and equivalently, as a Rel-valued functor \mathcal{L}_{Rel} .

Minimization via adjunctions

Brzozowski's minimization algorithm

```
\mathtt{min}(\mathcal{A}) = \mathtt{determinize}(\mathtt{transpose}(\mathtt{determinize}(\mathtt{transpose}(\mathcal{A})))),
```

where

- determinize applies a powerset construction to a non-deterministic automaton, and restricts to the reachable states, yielding a deterministic automaton, and
- transpose reverses all the edges of a non-deterministic automaton, and swaps the role of initial and final states (it accepts the mirrored language).

Brzozowski's minimization algorithm

$$\min(A) = \text{determinize}(\text{codeterminize}(A)),$$

Syntactic Monoids

Syntactic Monoid

Let L be a regular language over some finite alphabet A.

The synatctic monoid of L is the minimal monoid recognizing L.

Syntactic Monoid

Let L be a regular language over some finite alphabet A.

The synatctic monoid of L is the minimal monoid recognizing L.

The syntactic monoids via duality

Let $\mathcal{B}(L)$ denote the Boolean subalgebra of $\mathcal{P}(A^*)$ generated by the quotients of L, i.e. by the sets

$$w^{-1}Lv^{-1}=\{u\in A^*\mid wuv\in L\}$$

Theorem

The syntactic monoid of L is the dual of $\mathcal{B}(L)$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers

A monoid morphism $\phi \colon \mathbf{A}^* \to \mathbf{M}$ and $\mathbf{F} \subseteq \mathbf{M}$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers

A monoid morphism $\phi \colon A^* \to M$ and $F \subseteq M$.

However, we can easily work with unary contexts, so in fact we will represent as functors:

A*-biaction recognizers

A biaction morphism $\phi \colon A^* \to X$ and $F \subseteq X$.

Monoid and biaction recognizers

We are interested in

Monoid recognizers

A monoid morphism $\phi \colon A^* \to M$ and $F \subseteq M$.

However, we can easily work with unary contexts, so in fact we will represent as functors:

A*-biaction recognizers

A biaction morphism $\phi \colon A^* \to X$ and $F \subseteq X$.

A monoid recognizer induces an A^* -biaction recognizer. Conversely ...

Lemma

Surjective A*-biactions recognizers are in one-to-one correspondence with surjective monoid recognizers.

We change the input category

We will represent A^* -biaction recognizers as Set-valued functors from a different input category \mathcal{I}_{Mon}

A functor

$$A \colon \mathcal{I}_{\mathsf{Mon}} \to \mathsf{Set}$$

is just an A*-biaction recognizer.

- · initial automaton
- final automaton
- · factorization system

- initial automaton
- final automaton
- · factorization system

 exists because Set is cocomplete we can compute it as a colimit

- initial automaton
- final automaton
- · factorization system

- exists because Set is cocomplete we can compute it as a colimit
- exists because Set is complete we can compute it as a limit

- initial automaton
- final automaton ✓
- factorization system ✓

- exists because Set is cocomplete we can compute it as a colimit
- exists because Set is complete we can compute it as a limit
- lift the factorization system from Set

The syntactic monoid

Fact

The syntactic A^* -biaction recognizer is exactly the syntactic monoid of a given language \mathcal{L} .

The syntactic monoid

Fact

The syntactic A^* -biaction recognizer is exactly the syntactic monoid of a given language \mathcal{L} .

