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The setting: Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. : A*
in DWd : we Out
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in —2 states —Y— out
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The setting: Automata and languages as functors

An automaton A accepts a language £ when the next diagram
commutes

. : A*
in DWd : we Out

o

in —2 states —Y— out

For every language £: O — C we consider
a category Auto, of automata accepting L.

O can be seen as an “observation” subcategory of Z.

Much of the ensuing theory can be developed independently on the
precise shape of Z. 2/12



A useful lemma

An adjunction F 4 U: C — D lifts to an adjunction between functor
categories [Z,C] and [Z, D].
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categories [Z,C] and [Z, D]. We can refine this for any objects X in C
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such that, furthermore, the lifted functors preserve the ac-
cepted languages up to isomorphism
(since C(X, UY) = D(FX,Y)).
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An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor
of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
Up(1) =P(1) =2and Fp(1) = 1.

(Set,1,2)-automata 1 (Rel,1,1)-automata
| = |
States States
1 i 1
/—\
Set \i/ Rel

Up
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An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor

of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
Up(1) =P(1) =2and Fp(1) = 1.
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The same language L can be seen a Set-valued functor Lset, and
equivalently, as a Rel-valued functor Lgg.
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An instance: Determinization

The powerset construction is a right adjoint to the inclusion functor

of deterministic automata into non-deterministic automata.

Recall the adjunction between Set and Rel. We have
Up(1) =P(1) =2and Fp(1) = 1.
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The same language L can be seen a Set-valued functor Lset, and
equivalently, as a Rel-valued functor Lgg.
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Minimization via adjunctions

Obs
/\/_\

Reach, L Auto, gl Obs, .

\_/\_/

Reach
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Brzozowski's minimization algorithm

min(.4) = determinize(transpose(determinize(transpose(.A4)))),

where

 determinize applies a powerset construction to a
non-deterministic automaton, and restricts to the reachable
states, yielding a deterministic automaton, and

« transpose reverses all the edges of a non-deterministic
automaton, and swaps the role of initial and final states (it
accepts the mirrored language).
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Brzozowski's minimization algorithm

min(.4) = determinize(codeterminize(.A)),

incl g U?Dp Obs
o — — —
Reach(Lset) L Auto(Lset) L Auto(Lge;) LAUtO(Lgetor) Ll ObS(Lseror)
~_ ~_ ~_ ~_
Reach % @ incl
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Syntactic Monoids




Syntactic Monoid

Let L be a regular language over some finite alphabet A.

The synatctic monoid of L is the minimal monoid recognizing L.
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Syntactic Monoid

Let L be a regular language over some finite alphabet A.
The synatctic monoid of L is the minimal monoid recognizing L.
The syntactic monoids via duality

Let B(L) denote the Boolean subalgebra of P(A*) generated by the
quotients of L, i.e. by the sets

w'lLv ' = {u € A* |wuv € L}
Theorem

The syntactic monoid of L is the dual of B(L).
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Monoid and biaction recognizers

We are interested in

Monoid recognizers
A monoid morphism ¢: A* — Mand F C M.
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Monoid and biaction recognizers

We are interested in

Monoid recognizers
A monoid morphism ¢: A* — Mand F C M.

However, we can easily work with unary contexts, so in fact we will
represent as functors:

A*-biaction recognizers
A biaction morphism ¢: A* — X and F C X.

A monoid recognizer induces an A*-biaction recognizer. Conversely ...

Lemma . . .
Surjective A*-biactions recognizers are in one-to-one

correspondence with surjective monoid recognizers.
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We change the input category

We will represent A*-biaction recognizers as Set-valued functors
from a different input category Zuon

ugv

C )

! !
Tiein - in —Y states — 2 out

W

A functor
./4: IMon —> Set

is just an A*-biaction recognizer.
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The three ingredients for minimization

+ initial automaton
 final automaton

- factorization system
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The three ingredients for minimization

« initial automaton v
- final automaton v

- factorization system v

- exists because Set is cocomplete
we can compute it as a colimit

- exists because Set is complete
we can compute it as a limit

« lift the factorization system from Set
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The syntactic monoid

FaCt . . . .
The syntactic A*-biaction recognizer

is exactly the syntactic monoid of a given language L.

U V
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(u,v)eA* xA*
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The syntactic monoid

FaCt . . . .
The syntactic A*-biaction recognizer

is exactly the syntactic monoid of a given language L.
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