A categorical approach to automata learning and
minimization - part 3

Daniela Petrisan
Université Paris Cité, IRIF, France
TACL'24, Barcelona, 24-28 June 2024
l I' I I: INSTITUT

DE RECHERCHE

EN INFORMATIQUE
FONDAMENTALE

Automata Learning

Automata Learning

« A classical subject with a wide range of applications:
adaptive model checking, verification, learning network
invariants and interface specifications.

(see, e.g., Martin Leucker. Learning meets verification, 2007)

2/15

Automata Learning

« A classical subject with a wide range of applications:
adaptive model checking, verification, learning network
invariants and interface specifications.

(see, e.g., Martin Leucker. Learning meets verification, 2007)

« The most famous learning algorithm for automata is the
L*-algorithm of Dana Angluin.

D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 1978

2/15

The L*-algorithm

+ Goal: learn a regular language of words L.

3/15

The L*-algorithm

+ Goal: learn a regular language of words L.

« The algorithm interacts with a teacher who knows L by asking
two types of queries:

3/15

The L*-algorithm

+ Goal: learn a regular language of words L.

« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?

3/15

The L*-algorithm

+ Goal: learn a regular language of words L.
« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?
2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L.

3/15

The L*-algorithm

+ Goal: learn a regular language of words L.
« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

3/15

The L*-algorithm

+ Goal: learn a regular language of words L.
« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

+ The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.

3/15

The L*-algorithm: some definitions

« At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

4/15

The L*-algorithm: some definitions

« At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

- the T-equivalence relation: w ~yr viffYueT. wuel s vuel

4/15

The L*-algorithm: some definitions

« At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

- the T-equivalence relation: w ~yr viffYueT. wuel s vuel
* closedness:vVge QVacAdpeQ.p~rqa.

4/15

The L*-algorithm: some definitions

At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

the T-equivalence relation: w ~r viffYueT. wuel s vuel
closedness:vVge Q.Yvac A.3p €Q.p ~7qa.
consistency: Vg, €Q.VacA. q~rq = qa~rqa

4/15

The L*-algorithm: some definitions

At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

the T-equivalence relation: w ~r viffYueT. wuel s vuel
closedness:vVge Q.Yvac A.3p €Q.p ~7qa.

consistency: Vg, €Q.VacA. q~rq = qa~rqa

When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton #(Q, T)

4/15

The L*-algorithm

Q=T:={¢}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,g €cQ~vacA. g~1q = qa~7qga)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)

5/15

The L*-algorithm

Q=T := {8} Example: Learning the language

repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,qd cQ~YacA. g~1q = qa~7qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,qd cQ~YacA. g~1q = qa~7qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,qd cQ~YacA. g~1q = qa~7qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e} | {e}

(VgeQ.vYaecA3IpeQ.p~rqa)
if (Q, T) is not consistent enlarge T @/9\,4@
(Vvg,.g cQvaecA. q~rq = qa~rqa)

ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,qd cQ~YacA. g~1q = qa~7qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,qd cQ~YacA. g~1q = qa~7qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T °.°
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a} D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q7 T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q,T) is not closed enlarge Q {e.a} | {e}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q, T) is not closed enlarge Q {c.a,aa,aaa} | {c}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q, T) is not closed enlarge Q {c.a,aa,aaa} | {c}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q, T) is not closed enlarge Q {c.a,aa,aaa} | {c}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.
while (Q, T) not closed and consistent Q T

if (Q, T) is not closed enlarge Q {c.a,aa,aaa} | {c}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. D)
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then €~} 00, buta /.y aaa
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. <))
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T (e a}. <))
(Vvg,qd cQ~YacA. g~1q = qa~7qa) a
ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(VgeQVaeA3peQ.p~7qa)
. . . a
if (Q,T) is not consistent enlarge T (e, a), {e})
(Vvg,g €cQ~vacA. g~1q = qa~7qga) a
ask an equivalence query for H(Q7 T) Teacher: “No! aaa is a counterex.”
if the answer is no then g

add the counterexample and its G 7 6
H(Q,T) ‘ 6
preﬁxes to Q ° 0 @

until the answer is yes
return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(\geQ.vacA.3peQ.p~rqa)
if (Q, T) is not consistent enlarge T (e b (e) ‘ l" i
(quq/GQ.VGgA, q~t ql:>C]CI ’\’Tq/Cl) e‘a °

ask an equivalence query for ’H(Q7 T) Teacher: “No! aaa is a counterex.”

if the answer is no then g
add the counterexample and its ‘ ‘ 6
H(Q,T) d d
prefixes to Q ° e @
until the answer is yes Teacher: “Yes!”

return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(\geQ.vacA.3peQ.p~rqa)
if (Q, T) is not consistent enlarge T (e b (e) ‘ l" i
(quq/GQ.VGgA, q~t ql:>C]CI ’\’Tq/Cl) e‘a °

ask an equivalence query for ’H(Q} T) Teacher: “No! aaa is a counterex.”

if the answer is no then g
add the counterexample and its ‘ ‘ 6
H(Q,T) d d
prefixes to Q ° e @
until the answer is yes Teacher: “Yes!”

return 74(Q, T)
5/15

The L*-algorithm

Q=T := {8} Example: Learning the language
repeat {a} over the alphabet {a}.

while (Q, T) not closed and consistent Q T
if (Q, T) is not closed enlarge Q {e.a,aa,aaa} | {z,a}

(VgeQVaeA3peQ.p~7qa)
. . . a
if (Q,T) is not consistent enlarge T (e, a), {e})
(Vvg,g €cQ~vacA. g~1q = qa~7qga) a
ask an equivalence query for H(Q, T) Teacher: “No! aaa is a counterex.”
if the answer is no then g

add the counterexample and its G 7 6
H(Q,T) ‘ >6 ;
prefixes to Q ° e @
until the answer is yes Teacher: “Yes!”
return 74(Q, T) return 14(Q, T)

5/15

The L*-algorithm: Variations

The L*-algorithm has been extended to various other forms of
automata

- weighted automata over fields (Bergadano and Varricchio, 1996)
- subsequential transducers (Vilar, 1996)

« nominal automata (van Heerd et al., 2017)

« symbolic automata (Drews et al., 2017)

 non-deterministic automata (Bollig et al., 2009)

- alternating automata (Angluin et al., 2015)

6/15

The L*-algorithm: Variations

The L*-algorithm has been extended to various other forms of
automata

- weighted automata over fields (Bergadano and Varricchio, 1996)
- subsequential transducers (Vilar, 1996)

« nominal automata (van Heerd et al., 2017)

« symbolic automata (Drews et al., 2017)

 non-deterministic automata (Bollig et al., 2009)

- alternating automata (Angluin et al., 2015)

“The need for a unifying framework collecting various types of
learning techniques is, thus, beyond all questions.” Bollig et al., 2010

6/15

The L*-algorithm: Variations

The L*-algorithm has been extended to various other forms of
automata

- weighted automata over fields (Bergadano and Varricchio, 1996)
- subsequential transducers (Vilar, 1996)

« nominal automata (van Heerd et al., 2017)

« symbolic automata (Drews et al., 2017)

 non-deterministic automata (Bollig et al., 2009)

- alternating automata (Angluin et al., 2015)

“The need for a unifying framework collecting various types of
learning techniques is, thus, beyond all questions.” Bollig et al., 2010

Other category theoretic generalizations (van Heerd et al., 2017;

Urbat and Schroder, 2019)
6/15

Back to learning...
automata, not categories!

L* algorithm categorically??

Q=T:={¢}
repeat
while (Q, T) not closed and consistent
if (Q,T) is not closed enlarge Q
(VgeQVvacA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
Vg, cQNvacA. g~1rq = qa~1qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)

7/15

L* algorithm categorically??

Q=T:={¢}
repeat
while (Q, T) not closed and consistent
if (Q,T) is not closed enlarge Q
(VgeQVvacA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
Vg, cQNvacA. g~1rq = qa~1qa)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)

Thomas Colcombet, Daniela Petrisan, Riccardo Stabile: Learning Automata

and Transducers: A Categorical Approach. CSL 2021 115

L*-revisited

« At the (Q, T) stage of the algorithm the learner only has access
to a fragment of the language:

Loy : QATUQT A Lo

8/15

L*-revisited

« At the (Q, T) stage of the algorithm the learner only has access
to a fragment of the language:

Loy : QATUQT A Lo

« This can be represented by a notion of (Q, T)-biautomaton

g a (ach) f
17— Q4 Q ———— 2
(9€Q) — = (teT)

such that the following coherence diagrams commute

D/\

010/'
\ / T

N\/j

8/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
q f min
1 —"" Q/~ruar — X (QUQA)/~1 iy o
Emin

Recallw ~rviffYueT. wuelevuel

* under mild assumptions

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
q f min
1 —"" Q/~ruar — X (QUQA)/~1 iy o
Emin

Recallw ~rviffYueT. wuelevuel
> qmin(*) = [q]NTuAT

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
q f min
1 —"" Q/~ruar — X (QUQA)/~1 iy o
Emin

Recallw ~rviffYyueT. wuelsvuel
> qmin(*) = [q]NTuAT amin([q]NTUAT) = [qa]NT
Emin([q]NTuAT) = [q]NT

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
>Gmi min
1 I Q) riar T3 (QU QA)jmop —mn sy o
Emin
Recallw ~rviffYyueT. wuelsvuel
> qmin(*) = [q]NTuAT amin([q]NTUAT) = [qa]NT t <min ([q]Nr) = LQ-T(qt)
Emin([@l~riar) = (Gl t<min ([9a]~;) = Lo,r(qat)

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
>Gmi min
1 I Q) riar T3 (QU QA)jmop —mn sy o
Emin
Recallw ~rviffYyueT. wuelsvuel
> qmin(*) = [q]NTuAT amin([q]NTUAT) = [qa]NT t <min ([q]Nr) = LQ-T(qt)
Emin([@l~roar) = (Gl t<min ([9a]~;) = Lo,r(qat)

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a .
>qm; min ta
1 29 Q/mriar T3 (QUQA)/~r —min
Emin

Recallw ~rviffYyueT. wuelsvuel

> qmin(*) = [q]NTuAT amin([q]NTUAT) = [qa]NT t <pin ([q]NT) = LQ-T(qt)
Emin([A]~r0ar) = (Al t <pmin ([9al~;) = Lo,r(qat)
* emin is surjective iff (Q, T) is closed et |
5. 0.0 5 A . . while (Q, T) not closed and consistent
* £min 1S INjective iff (Q, T) is consistent if (Q,) is not closed enlarge Q

(VgeQ.¥aeA.IpeQ.p~rqa)
if (Q. T) is not consistent enlarge T
(vg.q'eQvaeA. g~rq = qa~rqa)
ask an equivalence query for %(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return %(Q,T)

9/15

Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a .
>qm; min ta
1 29 Q/mriar T3 (QUQA)/~r —min
Emin

Recallw ~rviffYyueT. wuelsvuel

> qmin(*) = [q]NTuAT amin([q]NTUAT) = [qa]NT t <min ([q]Nr) = LQ-T(qt)
Emin([@l~roar) = (Gl t<min ([9a]~;) = Lo,r(qat)
* emin IS surjective iff (Q, T) is closed et |
5. 0.0 5 A . . while (Q, T) not closed and consistent
* £min 1S INjective iff (Q, T) is consistent if (Q,) is not closed enlarge Q
(VgeQ.¥aeA.IpeQ.p~rqa)
* If epin Is @an isomorphism we merge the (@115 ot consstent enlarge T
79.q' €Q.Ya€A. q~rq =qa~rqa
two states of the (Q, T)-biautomaton e et e Sl
if the answer is no then
and Obtain 7_‘(0 T) add the counterexample and its
9 0

prefixes to Q
until the answer is yes
return %(Q,T)

9/15

The FunL*-algorithm

The FunL*-algorithm

input: teacher of the target language L in a catgeory C
output: Min(L)
Q:=T:={¢e}
repeat
while ¢, is not an isomorphism do Iso=ENM
if cmin & E then (E, M) fact. system
add QAto Q
if ¢,,i, ¢ M then
addATto T
ask an equivalence query for the hypothesis automaton #(Q, T)
if the answer is no then
add the counterexample and all its prefixes to Q
until the answer is yes
return #(Q, T)

10/ 15

Correction and termination of the algorithm

Theorem. Assume C is a category with a factorization system (E, M),
having countable copowers and countable powers.

We consider a target language L in the catgeory C such that the state
space of the minimal automaton for L is (E, M)-noetherian®
(generalization of finite).

Then the FunL*-algorithm terminates, eventually producing the
minimal automaton Min(L) accepting L.

*(E,M)-noetherianity means no infinite chains of E-quotients or of M-subobjects.

11/ 15

Perspectives

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

12/15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of K|(T)-automata ?

12/15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of K|(T)-automata ?

Some advancement in this direction

Quentin Aristote:

Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

12/15

Minimization/learning for free ?

What is special about certain monads? And why it works in some
cases and not in others?

Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of K|(T)-automata ?

Some advancement in this direction

Quentin Aristote:

Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that KI(T) is not good enough?

12/15

Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

13/15

Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices!

We see a Rel-valued automaton as a JSL-valued automaton.

13/15

Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices!

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

13/15

Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices!

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in

Frangois Denis, Aurélien Lemay, Alain Terlutte:

Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

13/15

Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices!

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in

Frangois Denis, Aurélien Lemay, Alain Terlutte:

Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.
13/15

Further extensions

- Extension to tree automata
« Weighted automata over semirings ...

« What about other forms of learning, e.g., nominal automata? We
can build on Victor Iwaniack’s work on automata in toposes.

14/ 15

And even more importantly ...

7
[=]

15/15

https://tcs4f.org/

And even more importantly ...

7

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the

TC S 4 F word, sign the TCS4F manifesto...

THEORETICAL
COMPUTER
SCIENTISTS
FOR FUTURE

https://tcs4f.org/

Y

15/15

https://tcs4f.org/

And even more importantly ...

7

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the

TC S 4 F word, sign the TCS4F manifesto...

Y

THEORETICAL An estimation of the emissions per
COMPUTER person for a return trip Paris -
SCIENTISTS Barcelone

FOR FUTURE

« by train : approx. 6 kg CO2

RS BT O « by plane : approx. 680 kg CO2

15/ 15

https://tcs4f.org/

	Automata Learning
	Back to learning... automata, not categories!
	The FunL*-algorithm
	Perspectives

