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Automata Learning

« A classical subject with a wide range of applications:
adaptive model checking, verification, learning network
invariants and interface specifications.

(see, e.g., Martin Leucker. Learning meets verification, 2007)
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Automata Learning

« A classical subject with a wide range of applications:
adaptive model checking, verification, learning network
invariants and interface specifications.

(see, e.g., Martin Leucker. Learning meets verification, 2007)

« The most famous learning algorithm for automata is the
L*-algorithm of Dana Angluin.

D. Angluin, Learning Regular Sets from Queries and
Counterexamples, Information and Computation, 1978
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The L*-algorithm

+ Goal: learn a regular language of words L.
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+ Goal: learn a regular language of words L.
« The algorithm interacts with a teacher who knows L by asking
two types of queries:

1. Membership queries: Does a word belong to the language ?

2. Equivalence queries: It gives the teacher a hypothesis automaton
and asks whether it accepts the language L. If no, the teacher
provides a counter-example.

+ The algorithm stops when the teacher agrees that the
hypothesis automaton accepts the language L.
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The L*-algorithm: some definitions

« At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.
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The L*-algorithm: some definitions

At each step, we maintain a pair of sets of words (Q, T), starting
with ({e}, {€}).
« Q —> potential states for the hypothesis automaton
« T —> test words used to define an equivalence relation coarser
than the Myhill-Nerode equivalence.

the T-equivalence relation: w ~r viffYueT. wuel s vuel
closedness:vVge Q.Yvac A.3p €Q.p ~7qa.

consistency: Vg, €Q.VacA. q~rq = qa~rqa

When (Q, T) is closed and consistent it is possible to build a
hypothesis automaton #(Q, T)
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The L*-algorithm

Q=T:={¢}
repeat
while (Q, T) not closed and consistent
if (Q, T) is not closed enlarge Q
(VgeQVaeA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
(Vvg,g €cQ~vacA. g~1q = qa~7qga)
ask an equivalence query for #(Q, T)
if the answer is no then
add the counterexample and its
prefixes to Q
until the answer is yes
return 7(Q,T)
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The L*-algorithm: Variations

The L*-algorithm has been extended to various other forms of
automata

- weighted automata over fields (Bergadano and Varricchio, 1996)
- subsequential transducers (Vilar, 1996)

« nominal automata (van Heerd et al., 2017)

« symbolic automata (Drews et al., 2017)

 non-deterministic automata (Bollig et al., 2009)

- alternating automata (Angluin et al., 2015)
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Other category theoretic generalizations (van Heerd et al., 2017;

Urbat and Schroder, 2019)
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Back to learning...
automata, not categories!




L* algorithm categorically??

Q=T:={¢}
repeat
while (Q, T) not closed and consistent
if (Q,T) is not closed enlarge Q
(VgeQVvacA3peQ.p~7qa)
if (Q, T) is not consistent enlarge T
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Thomas Colcombet, Daniela Petrisan, Riccardo Stabile: Learning Automata

and Transducers: A Categorical Approach. CSL 2021 115
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L*-revisited

« At the (Q, T) stage of the algorithm the learner only has access
to a fragment of the language:

Loy : QATUQT A Lo

« This can be represented by a notion of (Q, T)-biautomaton

g a (ach) f
17— Q4 Q ———— 2
(9€Q) — = (teT)

such that the following coherence diagrams commute

D/\

010/'
\ / T

N\/j
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Minimal (Q, T)-biautomaton and the hypothesis automaton

We can compute the minimal (Q, T)-biautomaton in an arbitrary
category* using off-the-shelf results from (Colcombet,P,, 2017).

a
q f min
1 —"" Q/~ruar — X (QUQA)/~1 iy o
Emin

Recallw ~rviffYueT. wuelevuel

* under mild assumptions
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The FunL*-algorithm




The FunL*-algorithm

input: teacher of the target language L in a catgeory C
output: Min(L)
Q:=T:={¢e}
repeat
while ¢, is not an isomorphism do Iso=ENM
if cmin & E then (E, M) fact. system
add QAto Q
if ¢,,i, ¢ M then
addATto T
ask an equivalence query for the hypothesis automaton #(Q, T)
if the answer is no then
add the counterexample and all its prefixes to Q
until the answer is yes
return #(Q, T)
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Correction and termination of the algorithm

Theorem. Assume C is a category with a factorization system (E, M),
having countable copowers and countable powers.

We consider a target language L in the catgeory C such that the state
space of the minimal automaton for L is (E, M)-noetherian®
(generalization of finite).

Then the FunL*-algorithm terminates, eventually producing the
minimal automaton Min(L) accepting L.

*(E,M)-noetherianity means no infinite chains of E-quotients or of M-subobjects.
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Are there some conditions on a monad T so that KI(T) has all the
required properties required for the existence of
minimization/learning of K|(T)-automata ?

Some advancement in this direction

Quentin Aristote:

Active Learning of Deterministic Transducers with Outputs in
Arbitrary Monoids. CSL 2024.

And what can be done when we know that KI(T) is not good enough?
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Minimizing NFAs

The category Rel ~ KI(P) does not have a good factorization system.

Move to Eilenberg-Moore algebras, that is, to the category of join
sup-semilattices!

We see a Rel-valued automaton as a JSL-valued automaton.

In JSL we have all the three ingredients for minimization ! Do we
retrieve a JSL-automaton that comes from an actual NFA?

It turns out yes! The canonical RFSA introduced in

Frangois Denis, Aurélien Lemay, Alain Terlutte:

Residual Finite State Automata. Fundam. Informaticae 51(4): 339-368
(2002)

Understand this through a lax functor from JSL to Rel... Ongoing
work with Quentin Schroeder and Quentin Aristote.
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Further extensions

- Extension to tree automata
« Weighted automata over semirings ...

« What about other forms of learning, e.g., nominal automata? We
can build on Victor Iwaniack’s work on automata in toposes.
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What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the

TC S 4 F word, sign the TCS4F manifesto...

THEORETICAL
COMPUTER
SCIENTISTS
FOR FUTURE
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And even more importantly ...

7

What we can do : keep a CO2
budget, choose more sustainable
means of transport, spread the

TC S 4 F word, sign the TCS4F manifesto...

Y

THEORETICAL An estimation of the emissions per
COMPUTER person for a return trip Paris -
SCIENTISTS Barcelone

FOR FUTURE

« by train : approx. 6 kg CO2

RS BT O « by plane : approx. 680 kg CO2
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